Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Colloids Surf B Biointerfaces ; 231: 113545, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37741147

ABSTRACT

Human noroviruses (HuNoVs) are the predominant etiological agent of viral gastroenteritis in all age groups worldwide. Mutations over the years have affected noroviruses' responses to environmental conditions due to the arrangement of amino acid residues exposed on the VP1 capsid surface of each strain. The GII.4 HuNoV genotype has been the predominant variant for decades, while the GII.17 genotype has often been detected in East Asia since 2014. Here, GII.17 and GII.4 baculovirus-expressed VLPs (virus-like particles) were used to study the biological (binding to HuNoV ligand, namely the ABO and Lewis antigens) and physicochemical properties (size, morphology, and charge) of the HuNoV capsid under different conditions (temperature, pH, and ionic strength). GII.17 showed stability at low and high ionic strength, while GII.4 aggregated at an ionic strength of 10 mM. The nature of the buffers influences the morphology and stability of the VLPs. Here, both VLPs were highly stable from pH 7-8.5 at 25 °C. VLPs retained HBGA binding capability for the pH, ionic strength and temperature encountered in the stomach (fed state) and the small intestine. Increasing the temperature to above 65 °C altered the morphology of VLPs, causing aggregation, and decreased their affinity to HBGAs. Comparing both isolates, GII.17 showed a better stability profile and higher affinity to HBGAs than GII.4, making them interesting candidate particles for a future norovirus vaccine. Biological and physicochemical studies of VLPs are as pertinent as ever in view of the future arrival of VLP-based HuNoV vaccines.


Subject(s)
Norovirus , Humans , Norovirus/genetics , Capsid Proteins/genetics , Capsid Proteins/chemistry , Temperature
2.
Nat Med ; 29(8): 2087-2098, 2023 08.
Article in English | MEDLINE | ID: mdl-37563240

ABSTRACT

Although patients with microsatellite instable metastatic colorectal cancer (CRC) benefit from immune checkpoint blockade, chemotherapy with targeted therapies remains the only therapeutic option for microsatellite stable (MSS) tumors. The single-arm, phase 1b/2 MEDITREME trial evaluated the safety and efficacy of durvalumab plus tremelimumab combined with mFOLFOX6 chemotherapy in first line, in 57 patients with RAS-mutant unresectable metastatic CRC. Safety was the primary objective of phase Ib; no safety issue was observed. The phase 2 primary objective of efficacy in terms of 3-month progression-free survival (PFS) in patients with MSS tumors was met, with 3-month PFS of 90.7% (95% confidence interval (CI): 79.2-96%). For secondary objectives, response rate was 64.5%; median PFS was 8.2 months (95% CI: 5.9-8.6); and overall survival was not reached in patients with MSS tumors. We observed higher tumor mutational burden and lower genomic instability in responders. Integrated transcriptomic analysis underlined that high immune signature and low epithelial-mesenchymal transition were associated with better outcome. Immunomonitoring showed induction of neoantigen and NY-ESO1 and TERT blood tumor-specific T cell response associated with better PFS. The combination of durvalumab-tremelimumab with mFOLFOX6 was tolerable with promising clinical activity in MSS mCRC. Clinicaltrials.gov identifier: NCT03202758 .


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Colorectal Neoplasms , Humans , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antibodies, Monoclonal/therapeutic use , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology
3.
Cancer Cell ; 40(2): 136-152.e12, 2022 02 14.
Article in English | MEDLINE | ID: mdl-35051357

ABSTRACT

Chemotherapy with anti PD-1/PD-L1 antibodies has become the standard of care for patients with metastatic non-small cell lung cancer (mNSCLC). Using lung tumor models, where pemetrexed and cisplatin (PEM/CDDP) chemotherapy remains unable to synergize with immune checkpoint inhibitors (ICIs), we linked the failure of this treatment with its inability to induce CXCL10 expression and CD8+ T cell recruitment. Using drug screening, we showed that combining a MEK inhibitor (MEKi) with PEM/CDDP triggers CXCL10 secretion by cancer cells and CD8+ T cell recruitment, sensitizing it to ICIs. PEM/CDDP plus a MEKi promotes optineurin (OPTN)-dependent mitophagy, resulting in CXCL10 production in a mitochondrial DNA- and TLR9-dependent manner. TLR9 or autophagy/mitophagy inhibition abolishes the anti-tumor efficacy of PEM/CDDP plus MEKi/anti-PD-L1 therapy. In human NSCLCs, high OPTN, TLR9, and CXCL10 expression is associated with a better response to ICIs. Our results underline the role of TLR9- and OPTN-dependent mitophagy in enhancing chemoimmunotherapy efficacy.


Subject(s)
Chemokine CXCL10/genetics , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Autophagy/drug effects , Autophagy/genetics , B7-H1 Antigen/antagonists & inhibitors , Biomarkers, Tumor , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/pathology , Cell Line, Tumor , Chemokine CXCL10/metabolism , Disease Models, Animal , Drug Resistance, Neoplasm/drug effects , Drug Synergism , Humans , Immune Checkpoint Proteins/genetics , Immune Checkpoint Proteins/metabolism , Mice , Mitophagy/genetics , Mitophagy/immunology , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Protein Binding , Protein Kinase Inhibitors/therapeutic use , Signal Transduction , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Xenograft Model Antitumor Assays
4.
Eur J Cancer ; 139: 70-80, 2020 11.
Article in English | MEDLINE | ID: mdl-32977223

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2, has caused a major pandemic. Patients with cancer are at higher risk of severe COVID-19. We aimed to describe and compare the immunological features of cancer patients hospitalised for COVID-19 or other concomitant, cancer-related illness. METHODS: In this prospective study, the clinical and immunological characteristics of 11 cancer patients with COVID-19 and 11 non-COVID-19 cancer patients hospitalised in the same unit at the same period for other medical issues were analysed. We also used 10 healthy volunteers as controls. Peripheral immune parameters were analysed using multiparametric flow cytometry. RESULTS: The median age of COVID-19-positive cancer patients was 71.1 years, and 66.4 years for controls. Compared with non-COVID-19 cancer patients, COVID-19-positive cancer patients had more extensive lymphopenia and hypoalbuminemia, with higher levels of C-reactive protein. In COVID-19 patients, elevated procalcitonin was associated with a higher risk of death. By phenotypic analysis, COVID-19-positive patients presented CD3 lymphopenia, with inversion of the CD4/CD8 ratio and modification of monocyte activation, with accumulation of mMDSC (monocytic Myeloid-Derived Suppressor Cells) -like cells and a decrease in activated monocytes. Analysis of the T-cell compartment revealed a T-dependent inflammatory response with accumulation of Th17 cells and cytotoxic CD8 T cells producing TNFα, a decrease in HLA-DR (Human Leukocyte Antigen - DR isotype)-positive CD8 T cells and Treg/CD8 ratio. CONCLUSION: SARS-CoV-2 infection in cancer patients is associated with CD4 T-cell lymphopenia with induction of an inflammatory T-cell response, accumulation of IFNγ+ TNFα+ CD8 T and Th17 cells, and a concomitant modification of monocyte activation status.


Subject(s)
Betacoronavirus/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Coronavirus Infections/immunology , Neoplasms/immunology , Pneumonia, Viral/immunology , T-Lymphocytes, Cytotoxic/immunology , Aged , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/transmission , Coronavirus Infections/virology , Female , France/epidemiology , Humans , Male , Neoplasms/epidemiology , Neoplasms/virology , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Prospective Studies , SARS-CoV-2 , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...